Abk�rzung zur Hauptnavigation Abk�rzung zu den Newsmeldungen Abk�rzung zu den Topstories  
English Version English Version
  MedUni Wien  trenner  Intranet  trenner  MedUni Wien - Shop  trenner  Universitätsbibliothek  trenner  Universitätsklinikum AKH Wien  trenner
 
Anatomie.png
 
 
 
Hauptnavigation
  • Home
  • Allgem. Informationen
  • Abteilungen / Wissenschaft & Forschung
  • Studium & Lehre
  • Jobs
 
Abteilungen / Wissenschaft & Forschung / Abteilung für Zell- u. Entwicklungsbiologie / Epigenetics and RNA Biology / Group Jantsch
 
Subnavigation
  • Abteilung für Anatomie
  • Abteilung für Zell- u. Entwicklungsbiologie
    • All Groups
    • Cell and Tissue Biology
    • Molecular Genetics and Orphan Diseases
    • Developmental Biology
    • Epigenetics and RNA Biology
      • Group Jantsch
        • Projects
        • People
        • Publications
        • Funding
        • Specific Links
      • Group Miller
      • Group Pusch
      • Group Rossmanith
      • Group Schaefer
      • Group Seiser
      • Group Vesely/Gawish/Pereira
      • Group Vilardo
      • Group Wossidlo
      • Group Goldeck/Holzer/Mikula
    • Publications


Inhaltsbereich

Group: Jantsch, Michael

Research Focus

Functional consequences of RNA editing

Eukaryotic RNAs can be post-transcriptionally capped, spliced, polyadenylated, edited, and chemically modified. These processing events determine fate and function of RNAs. Today, more than 100 different types of RNA-modifications are known. Yet, the machineries that add these modifications, the factors that bind and recognise them, and their biological consequences are poorly understood.
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in structured regions of RNAs. Inosines basepair with cytosines and therefore ADAR-mediated RNA-editing can recode RNAs, and change the folding and fate of RNAs. More than a million ADAR editing sites are known in the human transcriptome which are introduced by the two active enzymes ADAR1 or ADAR2. Mice lacking either ADAR1 or ADAR2 die prematurely and mutations in human ADARs are associated with Aicardi Goutières syndrome and dyschromatosis symmetrica hereditaria, depending on the enzyme affected. Yet, the consequences of ADAR-mediated RNA editing and its role in cellular and organismic function are poorly understood.

Main objectives

We aim at understanding the consequences of ADAR-mediated RNA editing at the cellular and organismic level. Specifically, we focus on an RNA editing event that leads to an amino acid exchanges in the actin-cross-linking protein filamin A (FLNA).
We also study why lack of ADAR1-mediated editing leads to elevated interferon signalling. Lastly, we study the interplay of RNA-editing with other RNA-processing events.

Content of research

We use transgenic mice, cell biological tools, and transcriptome analyses to study the consequences of RNA-editing events. Using mice deficient in either of the two RNA-editing enzymes ADAR1 or ADAR2 we study the interplay of these two enzymes with other RNA processing machineries. A mouse model specifically defective in filamin A pre-mRNA editing is used to study the consequences of this highly conserved RNA-editing event.


 

 

» Vienna RNA Biology, RNA SFB and Doctoral Program

 
Drucken
 

Schnellinfo

 
-- Zentrumsinfo
-- MitarbeiterInnen
-- Researcher profiles
-- Jobs
-- Körperspende
-- Nachruf Frau Univ. Prof. Dr. Margit Pavelka
-- Elektronenmikroskopie
 
 

Featured

 
 
 
 
 
 
 
© MedUni Wien | Impressum | Nutzungsbedingungen | Datenschutzerklärung | Barrierefreiheit | Kontakt